
NOTATION 

~, stress; ~, lo, lengths of stretched specimen at time t and at time t = 0, respective- 
ly; 7r, length of a contracting specimen of elastic fluid after tension force has been re- 
moved; ~r(~), length ~r at t § ~; d, diameter of a cylindrical specimen; e, elastic strain; 
~, deformation rate; F, tension force; ~o = F/So; So, cross-sectional area of a specimen at 
time t = 0; e , rate of irreversible deformation; ~, maximum Newtonian viscosity; Ge, high- 
elasticity equilibrium modulus; 0 = q/Ge, relaxation time; E, activation energy of viscous 
flow; R, universal gas constant; T, some fixed temperature; Tk, some variable temperature; 
~k' • tk' relaxation time, deformation rate, and time at temperature Tk; and s, full strain. 

LITERATURE CITED 

i ,  

2. 

3. 

4, 

5. 

6. 

G. V. Vinogradov, A. I. Leonov, and A. N. Prokunin, "Uniaxial elongation of viscoelastic 
cylinder," Rheol. Acta, 8, No. 4, 482-490 (1969). 
A. N. Prokunin and N. G. Proskurnina,'"Rheologyof polymer fluids under tension," Inzh.- 
Fiz. Zh., 36, No. i, 42-50 (1979). 
A. N. Prokunin, Nonlinear Elastic Effects in Elastic Polymer Fluids under Tension: Exper- 
iment and Theory [in Russian], Preprint No. 104, Inst. of Problems in Mechanics, Akad. 
Nauk USSR (1978). 
A. N. Prokunin and N.G. Proskurnina, "Roleof rheology in elongation of polymer melts by 
constant force," Inzh.-Fiz. Zh., 36, No. 3, 504-511 (1979). 
N. Nokajima and M. Shida, "Viscoelastic behavior of polyethylene during capillary flow 
expressed with three material functions," Trans. Soc. Rheol., iO, 299-316 (1966). 
G. V. Vinogradov and A. Ya. Malkin, Rheology of Polymers [in Russian], Khimiya, Moscow 
(1970) .  

TRANSIENT PROCESSES IN SHEAR FLOWS OF VISCOELASTIC FLUIDS. 

I. PROPAGATION OF A SHEAR WAVE 

Z. P. Shul'man, S. M. Aleinikov, 
and B. M. Khusid 

UDC 532.135 

A theoretical investigation is made of the initial stage of a transient process in 
the shear flow of a viscoelastic fluid having a relaxation-time spectrum. 

A number of solutions are presently known for problems of transient shear flows of vis- 
cous and viscoelastic fluids. For example, flows of viscoelastic Maxwell and Oldroyd liquids 
having one relaxation time in a plane gap between parallel plates and a half-space with a plate 
set into motion impulsively were investigated in [1-6]. The nonsteady rotation of an infinite 
cylinder in a viscous fluid was analyzed in [7-9]. The development of fluid flow with relax- 
ation and aftereffect of the Oldroyd type with an impulsively twisted cylinder is investiga- 
ted in [i0]. In [ii] this same model was used to analyze freely damped oscillations of a cy- 
linder by the method of a torsion pendulum. The results of such calculations are used to an- 
alyze nonsteady measurements in viscosimeters [12]. 

Because of the complexity of the molecular structure of polymer materials, their rheolog- 
ical behavior cannot be described by models of viscoelastic behavior with one relaxation time. 
For such media the character of the transient modes of deformation is determined to a consid- 
erable extent by the presence of a discrete relaxation spectrum. In this case a complete in- 
vestigation of the dynamics of transient modes of deformation requires the distinguishing of 
the characteristic stages of flow, as well as their detailed qualitative and quantitative an- 
alysis, which are absent in [1-12]. 

As the rheological equation of state of the fluid we use Maxwell's generalized model with 
a relaxation-time spectrum reflecting the relaxation properties of polymers: 
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o = - - P l + ~ ,  �9 = ~ T h .  

~h + ;~F~oo~k = 2~l~e, k = 1, 2 . . . . .  oo, 

F~oo~ = Y ) ~ / ~ t  -]- ~. V ~  4-. w.  ~ - -  ~ .  w + a (~,-e + e. '~).  

(5) 

Here ~ is the stress tensor; P, isotropic pressure; ~, excess-stress tensor; I, unit tensor; 
e = I/2(VV + VV ), d formatlon-veloczty tensor, ~/~t, substantlal derlvatlve~ w, vortlczty 
tensor. The following type of distribution of relaxation times and of the corresponding vis- 
cosities is used: 

k~ = k l k  ~ , qh  = qo tZ  (o0 k ~ , 

where I is the greatest relaxation time in the system; qo, initial Newtonian viscosity; Z(~), 
Riemann zeta function. Such a distribution of relaxation times ~k and of the corresponding 
relaxation moduli G k = ~o/XZ(~) has a molecular-kinetic basis and is used in many rheological 
models of polymer liquids (see, e.g., [13, 14]). With an increase in k the contributions of 
the corresponding terms to the sum (i) decrease. In the theories of Rouse and Zimm Ik ~ XE k2 
and lk ~ X/kS/2" Henceforth we consider the case of a = _+i, when the operator Fao o coincides 
with the upper and lower convective derivatives, respectively. 

The transient shear flow of a fluid in the gap between two coaxial cylinders (radii of 
the inner and outer cylinders RI and R2) developing from a state of rest, 

u(r, 0) = ~ ( r ,  0) = O, R ~ < r ~ R ~ ,  (2 )  

is described by the system of equations 

Ou 1 0 
(r2~), T 2 "~h, 

P Ot r ~ Or (3) 
I t=l  

where p, u, and T are the density, velocity, and shear stress in the fluid. We are analyzing 

the following three problems. 

i. At the time t = 0 rotation with a constant velocity U is imparted to the outer cylin~ 
der. The inner cylinder is rigidly fixed: 

u(t, R ~ ) ~ 0 ,  u(t,  R 2 ) = U = c o n ~ ,  t > 0 .  

This problem permits an investigation of the wave dynamics of the development of shear dis- 
turbances in viscoelastic fluids. 

2. At the time t = 0 a constant rotational velocity is imparted to the outer cylinder. 
The inner cylinder is connected to an elastic torsion: 

u(t,  R2) U, R~ d~ = = u(t,  RO, t > 0 .  
dt 

Here ~ is the angular deviation of the inner cylinder from the equilibrium position, determined 
from the equation of motion of the inner cylinder with a length L and a moment of inertia I, 

I ~ - -  2z~R~Lx (Ra, t) = -- • (t), t > O, 

where • is the stiffness of the torsion. Such a statement gives an exact mathematical formu- 
lation to the problem of fluid flow in a viscosimeter with coaxial cylinders in the absence of 
end effects. A similar problem also arises in the description of fluid flow in a rotary in- 
strument with a "cone-to-plane" working unit having a small gap angle [15, 16]. 

3. The outer cylinder is rigidly fixed, while a constant moment M of external forces, 
acting over a time interval t*, is applied to the inner cylinder at t = O: 

X~-- 2~R~L~ (R~, t) = M (t), 

u (R~, t) = u~ (t) - -  R~ dq~ ( t ) ,  u (R~, t) = o ,  t > O, 
dt  
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M ( t ) = {  M = c o n s t ,  O ~ t ~ < l *  

O, t ~ t * .  

This problem permits a description of the phenomenon of elastic recovery characteristic of 

viscoelastic fluids. It consists in a change in the direction of the rotation velocity of 
the inner cylinder after it is freed from the action of the external moment. In an inelastic 
fluid the inner cylinder slows down after unloading without changing the direction of the ve- 

locity. The method of application of a constant torsional moment to one of the measurement 
surfaces is widely used in rotary viscosimetry with coaxial cylinders [15, 16]. This makes 
it possible to combine the measurement of viscosity in the steady state with creep in the 
presteady state of shear. This method is especially suitable for measurements on instruments 
with considerable nonuniformity of the stress field. As noted in [15], the theory of the 
constant-moment method is inadequately developed. 

These problems were solved numerically using a finite-difference approximation. A purely 

implicit, conservative, difference scheme was constructed by the integrointerpolation method 
[17]. Stability was demonstrated for it by the Fourier method. A quasiuniform spatial grid 
[18], which crowds together near the moving surfaces, is used to convey the initial stage of 
transient flow in more detail. At each time layer the system of difference equations was 
solved by the three-point trial-run method. The convergence of the numerical solution was test- 
ed on a series of problems having analytical solutions, as well as by comparing results ob- 
tained on crowding grids. 

A conversion to dimensionless variables through the equations shows that the problems 

�9 - -  R ,  (1 q- ~y), t - -  p (R~ - -  R~)ZY/qo, 

u=V~ ~= nov ~-/(R,,-- t 0  

under consideration contain two dimensionless parameters; the relative gap thickness 6 = (R2 -- 
RI)/RI and the elasticity number EZ = Ino/p(R2 -- RI) 2, characterizing the ratio of the relax~ 
ation time of the fluid to the time of development of the velocity profile in a plane gap con~ 

taining the viscous fluid. In problems 2 and 3, where the dynamics of the inner cylinder is 
taken into account, there is an additional dimensionless parameter 

D = pRZlhZL/l _ 

262 I o 
[(1 + 6) ~ - -  1 ] I 

which represents~ with the accuracy of the multiplier, the ratio of the moment of inertia Io 
of the cylindrical layer of liquid with a thickness h = R2 -- Ra and a height L in the gap be- 
tween the cylinders to the moment of inertia I of the inner cylinder. The rotation velocity 

U of the outer cylinder is taken as the characteristic flow velocity V in problems i and 2~ 
2 while the rotation velocity of the inner cylinder in the established flow, V = )N/2~RzLqo~ 

is taken in problem 3. Most of the calculations were made for values of ~ = 1 and D = I. We 

mainly varied the quantities EZ and a characterizing the viscoelastic properties of the fluid 
for the rheological model under consideration. In place of the infinite series in (3) we took 
N terms and one purely viscous term with a "residual" viscosity: 

N 

k=N~-I h = l  

The calculations were made for N from i to 24. 

Let us consider the development of fluid flow in the gap when rotation is impulsively 
imparted to the outer cylinder while the inner one is rigidly fixed (problem i). First we 
analyze the plane case for a qualitative estimate of the development of flow: 

g [ 

-If ] 2 " 
O u 0 , O u ( x  t) ~h e , 
Ot Ox . ~ ( t - - t  ) dt' , ~ ( l ) =  ;~k 

0 h : l  

r 
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u(O, i) = V, /> 0 ;  u(x, 0) = 0, x ~ 0 ,  u(x, t)-*0 as x-+q-oo. 

Problem (4) is solved using a Laplace time transformation (for example~ see the solution of 
such problems for another type of function ~(t) in [19, 20])~ 

where u = i u exp (-- pt) d t � 9  
0 

. ,  d2u V 
ppt~ = ~ tP) -~x2, u(O)=., , u-+ 0 as x-+ q- oo, 

, . p 

From this we obtain the transform of the field of velocities 

u = - - e x p  - -  _P9 x 
p ~ , (p) 

(5) 

and of shear stresses acting on the moving plane 

~(o)= V ~ ( p )  p/p v. ( 6 ) 

Since ~(p)/qo depends only on %p, it follows from (6) that the quantity T(t)/(nopV2/~)a/2 
depends only on the ratio t/l. Let us consider the development of flow at t << i. In this 
case llpl >> i. The asymptotic behavior of the function @(p) as Iipl § ~, found just as in 
[21, 22], is given by the expression 

Z (a) ~ sin (~p)l- -a- (7) 

After  s u b s t i t u t i n g  t h i s  r e l a t i o n  in to  (5) and conver t ing  to the inve r se  t ransform,  we f ind 

1 

Z(a)asin ea r ( 1 - -  el ) , 

c + i ~  1 1 
V ; exp (pt--c~xp -5~-) dp, u (x, t) .~, 

2~i p 
where 

(8) 

1 l "F 

Making the substitution p § z/t in the integral of (8), we obtain 

u (x, t) ,~ Vf (~, ~), 

where 
1 

- t I- 1--2~ = X v  ~1o~, 
c - } - i  ~ 1 1 

f(~' ~)-- 2~il ~ exp(Z--z~Z-~)  dz. 
c--io* 

(9) 

Thus, the velocity distribution in the fluid at t << ~ is self-similar and depends only 
on the quantity ~. From (9) with t << I we find the following expression for the coordinate 
of the front of the shear wave: 

I I 
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This equation shows that the propagation of a shear wave slows with an increase both in 
with a fixed t/~ and in ~ with a fixed t. As ~ § ~, f(~, ~) = H(I -- ~), where H(~) is the 
Heaviside function, equal to unity for ~ ~ 0 and zero for ~ < 0; ~ =(x/t) p%~/~o. This velocity 
distribution corresponds to the purely elastic case and represents a rectangular impulse which 
is transferred in the medium with a finite velocity c = /no/1P. As ~ + 1 (it should be noted 

that such a transition is impossible in the rheological equation, since the series in (4) di- 
verges for e = i), 

f (~, ~) ,~, erfc (~2), ~ ~, x [ / /  0 
~ot" 

Such a velocity distribution corresponds to a purely viscous medium. The fluid flow involves 
the entire half-plane with a velocity decreasing monotonically to zero at infinity. For t >> 

(l~pl << 1), 
~(p)  ~ %, r ~ %~(t), (lO) 

where ~(t) is the Dirac delta function, i.e., we have purely viscous behavior of the fluid. 
Substituting this expression into (5) and converting to the inverse transform, we obtain the 
well-known self-similar velocity distribution in a viscous fluid [23] 

u(x, t)~--Verfc ' ~ :  ~d " 

Let Us calculate the momentum imparted to a plate lying at a distance x from the moving 
plate. From Eq.(5) we find 

! 

"~(p, x )  pVx [ ~(p) ]'2-exp(-- V / ppxZl 
p p j" 

( l l )  

We examine the asymptotic behavior of this expression at t << I and t ~> I. At t << I, sub- 

stituting (7) into (ii) and converting to the inverse transform, we obtain 

t 

- - J " ~ ( x ,  t)dt ~, oVx 
0 

r =), 

where 

c-[-i 0o 1 1 

~D(~, o~)-  1 S e x p ( z - - ~ z - ~ )  
2~i  2-- ~ dz. 

c - - t ~  Z 2 ~  

For e * ~, ~(~, ~) = (i -- r -- r while for ~ + i, ~(~, ~) = 2/~i/2 exp (--~2/4) -- ~erf 
(~/2). For t >> I, with allowance for (i0) 

t 

0 

Let us consider the development of shear stresses at a moving plate for short and long 
times. Substituting (7) into (6) for t << % and converting to the inverse transform, we find 

1 ! ! 

For  a f i x e d  t/X, T(O, t )  d e c r e a s e s  w i t h  an i n c r e a s e  i n  a .  For  a § ~,  ~(0~ t )  ~ (pV2no/X)~/2  
which  c o r r e s p o n d s  to  a p u r e l y  e l a s t i c  medium. When t >> X, 
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Fig. i. Profiles of velocity and shear stresses in viscoua and 

viscoelastic fluids for successive times: i) t = 0.05; 2) 0.25j 
3) 0.5; a) El = 0; b) ~ = 2.5; I) E1 = 0.i; II) i0~ c) E1 = i; 

I) ~ = 1.5; II) 3. 

I 

o 425 050 o,75 , j 

Fig. 2. Profiles of velocity and_shear stresses in viscous and 

viscoelastic fluids for the time t = 0.25: i) E1 = 0; 2) i; a = 
1.5; 3) E1 = i, a = 3; 4) E1 = i, ~ = 6, 

ill2 �9 (13) 

The expressions derived allow one to estimate the main characteristics of the development 
of a shear wave. The time t w of passage of the wave through the gap is determined by the re~ 

lations 
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Fig. 4. Dynamics of the arrival of relaxators at the viscous 

r_egime (E~ = i, ~ = 2.5; N = 24) for fiv_e successive times: i) 
t = 0.05; 2) 0.25; 3) 0.5; 4) 0.75; 5) t = 2. 

\ = .  for E1 >> t, tw,-, Ph----~ for E1 << 1. 
rio 

The increase in shear stresses at the outer cylinder is given by Eqs. (.12) for t << ~ and 
(13) for t >> 6. The momentum imparted to the inner cylinder over the time of propagation of 
the wave through the gap is 

tw 

- -  ~ T(h, l)dt  ~ 9Vhconst(a)  for E1 ~ I, (14)  
0 

Lw 
- -  J z (h, t) dt ~ 9Vh for E l ~  1. (15)  

0 
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Let us turn to an analysis of the results of numerical calculations of the development 
of shear flow. Profiles of velocity and shear stress for viscous and viscoelastic fluids are 
shown in Figs. 1 and 2. The calculations for a viscous fluid (Fig. i) lead to the well-known 
pattern of diffusional development of profiles of velocity and shear stress. At each point 
of the gap the velocity grows monotonically to a stationary value. The presence of elastic 
properties of the fluid imparts a wave character to the process of propagation of disturbance. 
The discontinuity of the velocity profile which occurs for Maxwell~s model with one relaxation 
time [3-5] is absent for the model with a spectrum of relaxation times~ The boundary of the 
region inside which the flow has developed by the given time has a rather blurred structure 
and gradually disappears. Such smoothing of the discontinuity also results from the use of 
Oldroyd's rheological model [3, 4], which allows for the time delay. In contrast to a vis- 
cous fluid, for a viscoelastic one the velocity at each point of the gap approaches the sta- 
tionary value while undergoin~ damped oscillations about the limiting value. With an increase 
in the number E~ (Fi~. i) the elastic properties of the fluid grow and the wave character of 
the propagation of disturbances is displayed more strongly, as well as the oscillatory charac- 
ter of the establishment of stationary profiles of velocity and shear stress. An increase 
in the parameter ~ leads to a similar result (Figs. 1 and 2). This is explained by the weak 
influence of terms containing k > 1 in Eq. (3) and the approach of the rheological equation 
to Maxwell's model with one relaxation time. The development of shear stresses at the inner 
and outer cylinders is shown in Fig. 3. Because of the impulsive imparting of rotational ve- 
locity to the outer cylinder, the shear stresses at it, T2, grow without limit as t § 0, 
which agrees with the estimates (12) and (13) obtained for viscoelastic and viscous fluids. 
As the numerical calculations showed, the presence of elastic properties of the fluid leads 
to a decrease in the initial values of the shear stresses at the outer cylinder. 

The character of the arrival of various relaxators at the viscous regime for El = i, 
= 2.5, and N = 24 can be seen from Fig. 4. The values of ~k/r~ were calc~ulated for each 

term of the series (3) at nine equidistant spatial points, where ~ = n~ r ~(~ ) is the shear 
stress for a viscous fluid with a viscosity n k. As t § ~, Tk/r ~ +KI. ~n Fig~ 4 each hori~ 
zontal corresponds to one relaxator at different spatial points, and the regions in which 

v 
0.98 < rk/~ k < 1.02, which expand with time, are outlined for successive times. As seen from 
Fig. 4, one can be entirely confined to N = 6-10. 

Thus, the above investigation shows the important influence of the elastic properties of 
a fluid and the relaxation time distribution on the characteristics of the initial stage of 
transient shear flow. 

An investigation of transient modes of flow of a viscoelastic fluid with allowance for 
the dynamics of the inner cylinder will be made in later reports. 
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